A Computational Study of Dynamic Obstruction in Type B Aortic Dissection

Author:

Kim T.1,van Bakel P. A. J.2,Nama N.3,Burris N.4,Patel H. J.2,Williams D. M.4,Figueroa C. A.56

Affiliation:

1. Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI 48105

2. Department of Cardiac Surgery, University of Michigan , Ann Arbor, MI 48105

3. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln , Lincoln, NE 68588

4. Department of Radiology, University of Michigan , Ann Arbor, MI 48105

5. Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI 48105 ; , Ann Arbor, MI 48105

6. Department of Surgery, University of Michigan , Ann Arbor, MI 48105 ; , Ann Arbor, MI 48105

Abstract

Abstract A serious complication in aortic dissection is dynamic obstruction of the true lumen (TL). Dynamic obstruction results in malperfusion, a blockage of blood flow to a vital organ. Clinical data reveal that increases in central blood pressure promote dynamic obstruction. However, the mechanisms by which high pressures result in TL collapse are underexplored and poorly understood. Here, we developed a computational model to investigate biomechanical and hemodynamical factors involved in Dynamic obstruction. We hypothesize that relatively small pressure gradient between TL and false lumen (FL) are sufficient to displace the flap and induce obstruction. An idealized fluid–structure interaction model of type B aortic dissection was created. Simulations were performed under mean cardiac output while inducing dynamic changes in blood pressure by altering FL outflow resistance. As FL resistance increased, central aortic pressure increased from 95.7 to 115.3 mmHg. Concurrent with blood pressure increase, flap motion was observed, resulting in TL collapse, consistent with clinical findings. The maximum pressure gradient between TL and FL over the course of the dynamic obstruction was 4.5 mmHg, consistent with our hypothesis. Furthermore, the final stage of dynamic obstruction was very sudden in nature, occurring over a short time (<1 s) in our simulation, consistent with the clinical understanding of this dramatic event. Simulations also revealed sudden drops in flow and pressure in the TL in response to the flap motion, consistent with first stages of malperfusion. To our knowledge, this study represents the first computational analysis of potential mechanisms driving dynamic obstruction in aortic dissection.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3