Virus Transmission Through Compromised Synthetic Barriers: Part I—Effect of Unsteady Driving Pressures

Author:

Myers Matthew R.1,Das Bigyani1

Affiliation:

1. Center for Devices and Radiological Health, U.S. FDA, HFZ-132, 12725 Twinbrook Parkway, Rockville, MD 20852

Abstract

Although synthetic membranes such as gloves, condoms, and instrument sheaths are used in environments with highly time-varying stresses, their effectiveness as barriers to virus transmission is almost always tested under static conditions. In this paper it is shown how a previously developed mathematical model can be used to transform information from static barrier tests into predictions for more realistic use conditions. Using a rate constant measured for herpes adsorption to latex in saline, and an oscillatory trans-membrane pressure representative of coitus, the amount of virus transmitted through a hole (2 μm diameter) in a condom is computed. Just beyond the exit orifice of the pore, transport is dominated by the rapidly dissipating viscous jet of virus suspension, which results in an accumulation of viruses roughly 20 pore radii from the barrier surface during each cycle. Due to virus adsorption to the barrier surfaces, the simulations reveal a gradual decrease in virus flow with increasing number of cycles, and thus a slow divergence from predictions based upon steady-state conditions. Still, over the 500 cycles simulated, steady-state predictions approximate the net number of viruses transmitted to within 25 percent error.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3