Power Generation and Oxygen Transfer Analyses for Micro Hydro-Turbine Installed in Wastewater Treatment Aeration Tank

Author:

Salem Abdel Rahman1,Hasan Alaa1,Hadi Ahmad Abdel1,Al Hamad Saif1,Qandil Mohammad1,Amano Ryoichi S.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 115 E. Reindl Way, Glendale, WI 53212

Abstract

Abstract This study targets one of the major energy consumers in the U.S. It suggests a new mechanical system that can recover a portion of the energy in Wastewater Treatment Plants (WWTPs). The proposed system entails a hydro-turbine installed above the air diffuser in the aeration tank to extract the water-bubble current’s kinetic energy and converts it to electricity. Observing the optimum location of the turbine required multiple experiments where turbine height varies between 35% and 95% (water height percentages above the diffuser), while varying the airflow between 1.42 L/s (3 CFM) and 2.12 L/s (4.5 CFM) with a 0.24 L/s (0.5 CFM) increment. Additionally, three water heights of 38.1 cm (15″), 53.4 cm (21″), and 68.6 cm (27″) were considered to study the influence of the water height. It was noticed that the presence of the system has an adverse effect on the standard oxygen transfer efficiency (SOTE). Therefore, a small dual-blade propeller was installed right above the diffuser to directly mix the water in the bottom of the tank with the incoming air to enhance the SOTE. The results showed that the maximum reclaimed power was obtained where the hydro-turbine is installed at 65–80% above the diffuser. A reduction of up to 7.32% in SOTE was observed when the setup was placed inside the tank compared to the tank alone. The addition of the dual-blade propeller showed an increase in SOTE of 7.27% with a power loss of 6.21%, ensuring the aeration process was at its standards.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference45 articles.

1. Correlations of Bubble Diameter and Frequency for Air–Water System Based on Orifice Diameter and Flow Rate;Al Ba’ba’a;ASME J. Fluids Eng.,2016

2. KLA Relation With Bubble Size, Bubble Release Rate and Number of Bubbles;Alkhalidi;Water Environ. J.,2013

3. Factors Affecting Fine Bubble Creation and Bubble Size for Activated Sludge;Alkhalidi;Water Environ. J.,2015

4. An Experimental Study of Reducing Back Pressure of Fine Air Diffuser Used in Wastewater Plants;Amano,2014

5. Wave Generation in Subsurface Aeration System: A New Approach to Enhance Mixing in Aeration Tank in Wastewater Treatment;Amano;Desalin. Water Treat.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of Optimal Power Generation in Small Hydropower Plants;Journal of Energy Resources Technology;2024-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3