Study on the Degradation Mechanism of the Proton Exchange Membrane Fuel Cell Based on a Constant Voltage Cold Start Mode

Author:

Yang Yanbo1,Ma Tiancai1,Pei Fenglai2,Lin Weikang1,Wang Kai1,Du Boyu1

Affiliation:

1. Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University, No. 4800, Caoan Road, Shanghai 201804, China

2. Shanghai Motor Vehicle Inspection Certification and Tech Innovation Center Co., Ltd., No. 68, South Yutian Road, Shanghai 201804, China

Abstract

Abstract The constant voltage cold start of the proton exchange membrane fuel cell (PEMFC) is usually operated at a low start-voltage in order to ensure high heat generation, which can shorten the process of the PEMFC cold start. However, the effect of constant voltage cold start on the durability of PEMFC is still unclear. Thus, in this work, the PEMFC is tested repeatedly at a low start-voltage to simulate its actual operating state in the vehicle. Then, the effect of the PEMFC durability under constant voltage cold start is investigated by polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy, transmission electron microscope, and ion chromatography. After the repeatedly cold start, the output performance of the PEMFC decreases significantly. According to the characterization results, the degradation mechanism of the PEMFC at the constant voltage cold start is demonstrated to be that the PEMFC start-up repeatedly at low start-voltage leads to the decomposition of membrane polymer structure and promotes the crossover of H2. Meanwhile, the PEMFC start-up repeatedly at low start-voltage also leads to the agglomeration of catalysts, which reduces the active area of catalysts and ultimately results in the degradation of fuel cell performance. Above all, this study proves that the durability of PEMFC can be shortened by the constant voltage cold start at 0.1 V, which provides a reference for the development of the PEMFC cold start control strategy.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3