Composite Circular Plates With Residual Tensile Stress Undergoing Large Deflections

Author:

Homeijer Brian1,Griffin Benjamin A.2,Williams Matthew D.2,Sankar Bhavani V.2,Sheplak Mark2

Affiliation:

1. Technology Development Organization, Image and Printing Group, HP, Corvallis, OR 97330

2. Interdisciplinary Microsystems Group, Department of Mech. & Aero. Eng., Univ. of Florida, Gainesville, FL 32611-6250

Abstract

Many micromachined electroacoustic devices use thin plates in conjunction with electrical components to measure acoustic signals. Composite layers are needed for electrical passivation, moisture barriers, etc. The layers often contain residual stresses introduced during the fabrication process. Accurate models of the composite plate mechanics are crucial for predicting and optimizing device performance. In this paper, the von Kármán plate theory is implemented for a transversely isotropic, axisymmetric plate with in-plane tensile stress and uniform transverse pressure loading. A numerical solution of the coupled force-displacement nonlinear differential equations is found using an iterative technique. The results are verified using finite element analysis. This paper contains a study of the effects of tensile residual stresses on the displacement field and examines the transition between linear and nonlinear behavior. The results demonstrate that stress stiffening in the composite plate delays the onset of nonlinear deflections and decreases the mechanical sensitivity. In addition, under high stress the plate behavior transitions to that of a membrane and becomes insensitive to the composite nature of the plate. The results suggest a tradeoff between mechanical sensitivity and linearity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3