Contrasting the Predictions for Coulomb and Creep-Rate-Dependent Friction in the Modeling of Fiber-Draw Processes

Author:

Bechtel S. E.1,Vohra S.2,Jacob K. I.3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210

2. School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295

3. School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295; G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295

Abstract

One of the most important features in industrial fiber-drawing processes is the friction between filament tow and draw rollers, because it is what creates the tension in the fiber that performs the draw. To understand fiber draw, therefore, it would be valuable to examine the sensitivity of model predictions to the choice of the idealization of the friction incorporated in the model. This paper begins the comparative study by deriving and solving models for fiber draw, which for the first time study the friction between filament tow and draw rollers as something other than Coulomb friction, namely creep-rate-dependent friction. Sensitivity of the draw model to the choice of friction idealization is investigated by contrasting process simulations employing the usual Coulomb model for friction with simulations of the same processes employing the creep-rate-dependent friction model. It is demonstrated that the draw-model predictions of fiber behavior depend both qualitatively and quantitatively on the specific idealization of the friction between filament and rollers. For example, whereas the Coulomb friction model predicts adhesion zones on the rollers, in which the fibers and roller move together with no slip, there are strictly no adhesion zones with the creep-rate-dependent friction model, although with a choice of processing parameters the predicted relative velocity between fiber and roller can be made arbitrarily small. With the creep-rate-dependent friction model the fiber speed at the point of attachment to the draw roller must be greater than the roller surface speed for the equations of momentum to be satisfied. This small, but finite, abrupt change in speed profile can be interpreted as the formation of a neck in the fiber just upstream of the point of attachment to the roller.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3