Redundant Manipulator Kinematics and Dynamics on Differentiable Manifolds

Author:

Haug Edward J.1,Peidro Adrian2

Affiliation:

1. Carver Distinguished Professor Emeritus, Department of Mechanical Engineering, The University of Iowa, Iowa City, IA 52242

2. Systems Engineering and Automation Department, Miguel Hernandez University , Elche, Alicante 03202, Spain

Abstract

Abstract A recently published treatment of nonredundant manipulator kinematics and dynamics on differentiable manifolds is extended to kinematically redundant manipulators. Analysis at the configuration level shows that forward kinematics and dynamics of redundant manipulators are identical to that for nonredundant manipulators. The manifold-based inverse kinematics formulation that is presented for redundant manipulators, in contrast, yields parameterizations of set-valued inverse kinematic mappings at the configuration level, where sharper results are obtained than those presented in the literature using velocity formulations. Explicit expressions are derived for set-valued inverse kinematic mappings for both serial and nonserial (called compound) kinematically redundant manipulators, as functions of vectors of arbitrary parameters. Parameterizations are presented for both manipulator regular configuration manifolds and self-motion manifolds, the latter comprised of sets of inputs that map into the same output. It is shown that kinematically redundant configuration manifolds and self-motion differentiable manifolds are distinctly different and play complementary roles in redundant manipulator kinematics. Computational methods are presented for evaluation of set-valued inverse kinematic mappings, without problem-dependent ad hoc analytical manipulations. Redundant serial and compound manipulator examples are presented to illustrate computation of set-valued inverse kinematic mappings and the use of self-motion manifold mappings in obstacle avoidance applications. Differentiation of configuration level inverse mappings yields inverse velocity and acceleration mappings as functions of time-dependent arbitrary parameters that play a central role in manipulator dynamics and control.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3