Development, Validation, and Application of an Optimization Scheme for Impellers of Centrifugal Fans Using Computational Fluid Dynamics-Trained Metamodels

Author:

Bamberger Konrad1,Carolus Thomas2,Belz Julian3,Nelles Oliver4

Affiliation:

1. Institute for Fluid Dynamics and Thermodynamics, University of Siegen, 57068 Siegen, Germany

2. Institute for Fluid Dynamics and Thermodynamics, University of Siegen, 57076 Siegen, Germany

3. Institute for Mechanics and Control Engineering, University of Siegen, 57076 Siegen, Germany

4. Institute for Mechanics and Control Engineering, University of Siegen, 57068 Siegen, Germany

Abstract

Abstract A quick method for the design of efficiency-optimal centrifugal fan impellers is presented. It is based on an evolutionary optimization algorithm that identifies the optimal geometrical parameters for a given aerodynamic objective function. The range of the geometrical parameters considered allows covering aerodynamic design points appropriate for the complete class of centrifugal fans. The quickness of the method stems from evaluating the objective function using metamodels. In total, four metamodels, based on local model networks (LMN) and multi-layer perceptrons (MLP), were trained and eventually aggregated to reduce the variance (stochastic) error. The training data consist of approximately 4000 characteristic curves obtained from automated numerical steady-state Reynolds-averaged Navier–Stokes (RANS) flow simulations. The computational domain as well as the number of grid nodes and their distribution in the domain were optimized in a pre-study. For verification, a grid independence study was carried out. In addition, two criteria were defined to detect aerodynamic operating points associated with non-physical performance predictions. Finally, validation was secured with experimental data from three exemplary impeller designs. The proposed optimization scheme requires a costly initial one-time computational fluid dynamics (CFD) effort, but then allows a quick design of centrifugal fan impellers for arbitrary design points. The search for an optimal centrifugal impeller requires less than 1 min on a standard personal computer, while allowing up to 105 objective function evaluations for one search. Moreover, predicted performance curves that always come along with each design were found to be very reliable in comparison with experiments.

Funder

Forschungsvereinigung Luft-und Trocknungstechnik

Publisher

ASME International

Subject

Mechanical Engineering

Reference23 articles.

1. Die Kreiselpumpen für Flüssigkeiten und Gase

2. A Combination of Conventional Layout Desing and Numerical Methods for the Optimization of Centrifugal Fans;Ratter,2012

3. Empirical Model for the Quantitative Prediction of Losses of Radial Fans Based on CFD Calculations;Ratter,2013

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3