Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I—Simultaneous Prediction of Reaction Force and Lateral Displacement

Author:

DiSilvestro Mark R.1,Zhu Qiliang1,Wong Marcy2,Jurvelin Jukka S.3,Suh Jun-Kyo Francis1

Affiliation:

1. Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118

2. M.E. Mu¨ller Institute for Biomechanics, University of Bern, Bern, Switzerland

3. Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland

Abstract

This study investigated the ability of the linear biphasic poroelastic (BPE) model and the linear biphasic poroviscoelastic (BPVE) model to simultaneously predict the reaction force and lateral displacement exhibited by articular cartilage during stress relaxation in unconfined compression. Both models consider articular cartilage as a binary mixture of a porous incompressible solid phase and an incompressible inviscid fluid phase. The BPE model assumes the solid phase is elastic, while the BPVE model assumes the solid phase is viscoelastic. In addition, the efficacy of two additional models was also examined, i.e., the transversely isotropic BPE (TIBPE) model, which considers transverse isotropy of the solid matrix within the framework of the linear BPE model assumptions, and a linear viscoelastic solid (LVE) model, which assumes that the viscoelastic behavior of articular cartilage is solely governed by the intrinsic viscoelastic nature of the solid matrix, independent of the interstitial fluid flow. It was found that the BPE model was able to accurately account for the lateral displacement, but unable to fit the short-term reaction force data of all specimens tested. The TIBPE model was able to account for either the lateral displacement or the reaction force, but not both simultaneously. The LVE model was able to account for the complete reaction force, but unable to fit the lateral displacement measured experimentally. The BPVE model was able to completely account for both lateral displacement and reaction force for all specimens tested. These results suggest that both the fluid flow-dependent and fluid flow-independent viscoelastic mechanisms are essential for a complete simulation of the viscoelastic phenomena of articular cartilage.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3