Optimum Performance of a Regenerative Gas Turbine Power Plant Operating With/Without a Solid Oxide Fuel Cell

Author:

Haseli Y.1

Affiliation:

1. Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, Eindhoven 5600 MB, Eindhoven, The Netherlands

Abstract

Optimum pressure ratios of a regenerative gas turbine (RGT) power plant with and without a solid oxide fuel cell are investigated. It is shown that assuming a constant specific heat ratio throughout the RGT plant, explicit expressions can be derived for the optimum pressure ratios leading to maximum thermal efficiency and maximum net work output. It would be analytically complicated to apply the same method for the hybrid system due to the dependence of electrochemical parameters such as cell voltage on thermodynamic parameters like pressure and temperature. So, the thermodynamic optimization of this system is numerically studied using models of RGT plant and solid oxide fuel cell. Irreversibilities in terms of component efficiencies and total pressure drop within each configuration are taken into account. The main results for the RGT plant include maximization of the work output at the expenses of 2–4% lower thermal efficiency and higher capital costs of turbo-compressor compared to a design based on maximum thermal efficiency. On the other hand, the hybrid system is studied for a turbine inlet temperature (TIT) of 1 250–1 450 K and 10–20% total pressure drop in the system. The maximum thermal efficiency is found to be at a pressure ratio of 3–4, which is consistent with past studies. A higher TIT leads to a higher pressure ratio; however, no significant effect of pressure drop on the optimum pressure ratio is observed. The maximum work output of the hybrid system may take place at a pressure ratio at which the compressor outlet temperature is equal to the turbine downstream temperature. The work output increases with increasing the pressure ratio up to a point after which it starts to vary slightly. The pressure ratio at this point is suggested to be the optimal because the work output is very close to its maximum and the thermal efficiency is as high as a littler less than 60%.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3