Robust Real-Time Optimization of a Solid Oxide Fuel Cell Stack

Author:

Marchetti A.1,Gopalakrishnan A.2,Chachuat B.3,Bonvin D.4,Tsikonis L.,Nakajo A.,Wuillemin Z.,Van herle J.5

Affiliation:

1. GIAIP-CIFASIS (CONICET,UNR,UPCAM III), 27 de Febrero 210bis, S2000EZP Rosario, Argentina

2. Laboratoire d’ Automatique (LA), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

3. Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, UK

4. Laboratoire d’ Automatique (LA), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerlande-mail:

5. Laboratoire d’Énergétique Industrielle (LENI), EPFL CH-1015 Lausanne, Switzerland

Abstract

On-line control and optimization can improve the efficiency of fuel cell systems, whilst simultaneously ensuring that the operation remains within a safe region. Also, fuel cells are subject to frequent variations in their power demand. This paper investigates the real-time optimization (RTO) of a solid oxide fuel cell (SOFC) stack. An optimization problem maximizing the efficiency subject to operating constraints is defined. Due to inevitable model inaccuracies, the open-loop implementation of optimal inputs evaluated off-line may be suboptimal, or worse, infeasible. Infeasibility can be avoided by controlling the constrained quantities. However, the constraints that determine optimal operation might switch with varying power demand, thus requiring a change in the regulator structure. In this paper, a control strategy that can handle plant-model mismatch and changing constraints in the face of varying power demand is presented and illustrated. The strategy consists in the integration of RTO and model predictive control (MPC). A lumped model of the SOFC is utilized at the RTO level. The measurements are not used to re-estimate the parameters of the SOFC model at different operating points, but to simply adapt the constraints in the optimization problem. The optimal solution generated by RTO is implemented using MPC that uses a step-response model in this case. Simulation results show that near-optimality can be obtained, and constraints are respected despite model inaccuracies and large variations in the power demand.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3