Affiliation:
1. Institute for Fuel Cell Innovation, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, BC, Canada V6T 1W5
Abstract
In this paper, two testing protocols were developed in order to accelerate the lifetime testing of proton exchange membrane (PEM) fuel cells. The first protocol was to operate the fuel cell at extremely high temperatures, such as 300 °C, and the second was to operate the fuel cell at unusually high current densities, such as 2.0 A/cm2. A PEM fuel cell assembled with a PBI membrane-based MEA was designed and constructed to validate the first testing protocol. After several hours of high temperature operation, the degraded MEA and catalyst layers were analyzed using SEM, XRD, and TEM. A fuel cell assembled with a Nafion 211 membrane-based MEA was employed to validate the second protocol. The results obtained at high temperature and at high load demonstrated that operating a PEM fuel cell under certain extremely high-stress conditions could be used as methods for accelerated lifetime testing.
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献