Simulation Test Research on Typical Simulator NS-2 in Urban Vehicle Ad Hoc Network Based on Big Data

Author:

Wang Xiaoting11,Jin Junxia2,Zhao Zhan1

Affiliation:

1. Kaifeng University , Kaifeng 475004 , China

2. Kaifeng Vocational College of Culture and Arts , Kaifeng 475004 , China

Abstract

Abstract Vehicle ad hoc network (VANET) has gradually become a prominent research topic in the fields of wireless networks and intelligent vehicles. VANETs are unique mobile ad hoc networks with vehicles as their mobile nodes, presenting distinctive performance characteristics compared to traditional wireless self-organizing networks. In recent years, VANETs have gained significant attention in the wireless network and intelligent transportation domain. As an integral aspect of autonomous driving technology, vehicle-to-everything (V2X) communication spans multiple disciplines and is closely related to intelligent transportation, assisted driving, active safety, and smart vehicles. Evaluating VANET protocols and applications in real-world settings can be challenging. Therefore, utilizing simulation tools for VANET research is an effective approach. In this paper, we have designed and developed an optimized platform that uses IEEE 802.11a and IEEE 802.11p protocols for communication within a simulated urban traffic environment created with NS-2. The simulation results confirm the feasibility and rationale of applying the IEEE 802.11p protocol to wireless vehicular ad hoc networks. Within a distance of 300 m, at 0.0000 s, 14 key packets have not arrived in IEEE 802.11a, and 8 packets have not arrived in IEEE 802.11p; at 8.0000 s, 38 key packets have not arrived in IEEE802.11a, and 6 packets have not arrived in IEEE802.11p. Comparing the performance of IEEE 802.11a and IEEE 802.11p, the study concluded that the use of the 802.11p protocol in urban mobile environments can improve reliability and reduce average packet latency.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3