Optimization of LM2500 Gas Generator and Power Turbine Trim-Balance Techniques

Author:

Thompson B. D.1

Affiliation:

1. Naval Sea Systems Command, Washington, DC

Abstract

A procedure has been developed by the U.S. Navy to trim-balance, in-place, the gas generator and power turbine rotor of the LM2500 Marine Gas Turbine Engine. This paper presents the theoretical background and the techniques necessary to optimize the procedure to balance the gas generator rotor. Additionally, a method was developed to trim balance LM2500 power turbines. To expand the implementation of both gas generator and power turbine trim-balancing, a capability has to be developed to minimize the effort required (trial weight runs, etc.). The objective was to be able to perform consistently what are called “First-Shot” trim balances. First-Shot trim balances require only one weight placement to bring the engine vibration levels to within the specified goals (less than 0.002 of an in. maximum amplitude) and that being the final trim weight. It was realized that the Least-Squares Influence-Coefficient Method, even with a good set of averaged influence coefficients, can lead to a number of trial weight experiments before the final trim weights can be placed. The method used to maximize the possibility of obtaining a First-Shot trim balance was to use modal information to tailor the influence coefficient sets to correct the most predominant and correctable imbalance problem. Since the influence coefficients were tailored, it became necessary to be able to identify, in the initial vibration survey, the type of response a particular LM2500 has. Using modal information obtained from a LM2500 rotor dynamics model and from the early trim-balance efforts, it was possible to identify the modal response of a given LM2500 and optimize the trim balance of that engine. With these improved techniques a 70 percent success rate for First-Shot trim balance has been achieved and the success rate of the trim balance procedure, as a whole, has been near 100 percent.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3