A Reduced Basis Approach for Modeling the Movement of Nuclear Reactor Control Rods

Author:

Sartori Alberto1,Cammi Antonio1,Luzzi Lelio1,Rozza Gianluigi2

Affiliation:

1. Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano 20156, Italy e-mail:

2. SISSA MathLab, International School for Advanced Studies, Trieste 34136, Italy e-mail:

Abstract

This work presents a reduced order model (ROM) aimed at simulating nuclear reactor control rods movement and featuring fast-running prediction of reactivity and neutron flux distribution as well. In particular, the reduced basis (RB) method (built upon a high-fidelity finite element (FE) approximation) has been employed. The neutronics has been modeled according to a parametrized stationary version of the multigroup neutron diffusion equation, which can be formulated as a generalized eigenvalue problem. Within the RB framework, the centroidal Voronoi tessellation is employed as a sampling technique due to the possibility of a hierarchical parameter space exploration, without relying on a “classical” a posteriori error estimation, and saving an important amount of computational time in the offline phase. Here, the proposed ROM is capable of correctly predicting, with respect to the high-fidelity FE approximation, both the reactivity and neutron flux shape. In this way, a computational speedup of at least three orders of magnitude is achieved. If a higher precision is required, the number of employed basis functions (BFs) must be increased.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference30 articles.

1. U.S. DOE Nuclear Energy Research Advisory Committee and Generation IV International Forum, 2002, “A Technology Roadmap for Generation IV Nuclear Energy System (GIF-002-00),” Dec. 2002.

2. Performance Evaluation of a 3-D Kinetic Model for CANDU Reactors in a Closed-Loop Environment;Nucl. Eng. Des.,2012

3. An Introduction to the Proper Orthogonal Decomposition;Curr. Sci.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3