Finite Element Methods in Probabilistic Structural Analysis: A Selective Review

Author:

Benaroya H.1,Rehak M.1

Affiliation:

1. Applied Science Division, Weidlinger Associates, 333 Seventh Avenue, New York NY 10001

Abstract

This review examines the field of structural analysis where finite element methods (FEMs) are used in a probabilistic setting. The finite element method is widely used, and its application in the field of structural analysis is universally accepted as an efficient numerical solution method. The analysis of structures, whether subjected to random or deterministic external loads, has been developed mainly under the assumption that the structure’s parameters are deterministic quantities. For a significant number of circumstances, this assumption is not valid, and the probabilistic aspects of the structure need to be taken into account. We present a review of this emerging field: stochastic finite element methods. The terminology denotes the application of finite element methods with a probabilistic context. This broad definition includes two classes of methods: (i) first- and second-order second moment methods, and (ii) reliability methods. This paper addresses only the first category, leaving the second to specialists in that area. The contribution of this review is to illustrate the similarities and differences of the various methods falling in the first category. Also excluded from this review are simulation methods such as Monte Carlo and response surface, and methods that use FEM to solve deterministic equations (Fokker–Planck) governing probability densities. The essential conclusion is that the second moment methods are mathematically identical to the second order (except for the Neumann expansion). The essential distinction that can be made regarding stochastic FEM is the nature of the structure: It can be deterministic or random. By random structure is meant one with parameters that have associated uncertainties, and thus which must be modeled in a random form. Although the randomness in the structure can be of three types, random variable, random process in space, and random process in time, discussion will be limited to the first two categories. While keeping the emphasis on finite element methods, other techniques involving finite differences, which are useful in the study of multi-degree-of-freedom systems, are briefly mentioned. The present review covers only developments that are derived from the engineering literature, thus implying near-term applicability.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Uncertainty Quantification of Eigenvalues and Eigenspaces with Higher Multiplicity;SIAM Journal on Numerical Analysis;2024-02-07

2. Computational applications of extended SIR models: A review focused on airborne pandemics;Ecological Modelling;2023-09

3. Tooth Base Geometrical Variability Effect on the Vibration Behavior of the Stator;The International Journal of Acoustics and Vibration;2023-06-16

4. Probabilistic Performance-Based Seismic Design and Assessment for Slope Engineering;Guidelines for Probabilistic Performance-Based Seismic Design and Assessment of Slope Engineering;2023

5. Structural Evaluation of Variable Gauge Railway;Infrastructures;2020-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3