Radiative Heat Transfer in Turbulent Combustion 2021 Max Jakob Memorial Award Paper

Author:

Modest Michael F.1

Affiliation:

1. Department of Mechanical Engineering, University of California at Merced , Merced, CA 95343

Abstract

Abstract In many important combustion applications, heat transfer is dominated by thermal radiation from combustion gases and soot. Thermal radiation from combustion gases is extremely complicated, and accurate and efficient predictions are only now becoming possible with the use of accurate global methods, such as full-spectrum k-distributions, and with state-of-the-art line-by-line accurate Monte Carlo methods. The coupling between turbulence and radiation can more than double the radiative loss from a flame, while making theoretical predictions vastly more complicated. This paper is an embellished version of the 2021 Max Jakob Award lecture: Radiative properties and computational methods will be briefly discussed, and several examples of turbulent reacting flows, an oxy-fuel furnace, and high-pressure fuel sprays in combustion engines will be presented. Thermal radiation can also be used as an optical diagnostic tool to determine temperature and concentration distributions, which will be briefly discussed.

Publisher

ASME International

Reference92 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3