Analysis and Optimization of Crucial Factors Affecting Efficacy of Microwave Ablation

Author:

Avishek Shubhamshree1,Samantaray Sikata2

Affiliation:

1. Department of Mechanical Engineering, NIT Meghalaya , Meghalaya 793003, India

2. Department of Mechanical Engineering, ITER, SOA Deemed to Be University , Bhubaneswar 751020, India

Abstract

Abstract Microwave ablation (MA) has emerged as a better and more promising alternative to medicate the primitive stage of cancer. Significant advantages of MA include organ-specific treatment and the prospect of treating ≥3 cm diameter tumors with minimal pain and nominal cost. Past studies suggest that tissue properties and input parameters play a vital role during the MA process. Hence, an in-depth investigation has been made to inspect the influence of these crucial parameters: applied power, perfusion rate of blood, frequency, thermal conductivity (TC), electrical conductivity (EC), and relative permittivity (RP) on the dimension of ablation zone attained while treating with MA on Lungs. The finite element method (FEM)-based analysis with a numerical approach is considered to signify the parameters' sole effect on the ablation volume. Using the statistical tool, a regression equation was formulated, and the data derived from the Taguchi L27 orthogonal array helped to get the maximized ablation zone. The results infer that the applied power remarkably affects the response with a positive correlation. Additionally, frequency and blood perfusion rate were observed to significantly influence the treatment process. The following optimal settings, power3, frequency3, blood perfusion rate3, electrical conductivity3, thermal conductivity2, and relative permittivity2, were found along with the maximized ablation volume of 14.35 mm3. The results obtained from this work would be beneficial for the radiologist and the clinical practitioners to get pretreatment data during the initial phase.

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3