An Experimental Investigation of the Blowout Limits of a Jet Diffusion Flame in Co-Flowing Streams of Different Velocity and Composition

Author:

Wierzba I.1,Kar K.1,Karim G. A.1

Affiliation:

1. Department of Mechanical Engineering, University of Calgary, Calgary, Alberta, Canada

Abstract

The blowout limits of a methane diffusion flame in a co-flowing air-fuel or air-diluent stream were determined for a range of surrounding co-flow stream velocities, both laminar and turbulent, up to ~ 1.50 m/s. Methane, ethylene, propane and hydrogen were used as the fuels in the surrounding co-flow stream while nitrogen and carbon dioxide were used as diluents. The experimental results show that the velocity of the surrounding stream affects the blowout phenomena significantly. An increase in the stream velocity has a detrimental effect on the blowout limits at very low velocities up to 0.30 m/s (essentially laminar flow) and at velocities higher than 1.50 m/s (turbulent flow). The addition of a fuel to the air stream in most cases enhances the blowout limit of a methane diffusion flame. However, different trends in the variation of the blowout limits with the surrounding fuel concentration were observed, depending on the type of fuel used and on whether the surrounding coflow stream was laminar or turbulent. The addition of nitrogen or carbon dioxide to the air stream results in decreasing the blowout limits. The effect is more severe at the higher velocities.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Investigation of Combustion of Liquid Hydrocarbon Sprays in Homogeneous Mixtures of Fuel and Air;Proceedings of the Seventh International Conference on Liquid Atomization and Spray Systems;2023

2. Prediction and Validation of Blowout Limits of Co-Flowing Jet Diffusion Flames—Effect of Dilution;Journal of Energy Resources Technology;1998-06-01

3. The effects of hydrogen addition on the stability limits of methane jet diffusion flames;International Journal of Hydrogen Energy;1998-02

4. Characteristics of Laminar Lifted Flames in a Partially Premixed Jet;Combustion Science and Technology;1997-08

5. Lift-Off Characteristics and Flame Base Structure of Coal Seeded Gas Jet Flames;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;1996-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3