Affiliation:
1. Oil Sands and Hydrocarbon Recovery Department, Alberta Research Council, Edmonton, Alberta, T6H 5X2, Canada
2. Petro-Canada Resources, Calgary, Alberta, T2P 3E3, Canada
Abstract
This paper is a review of current techniques available for measuring the velocity and composition in multiphase streams, to obtain the mass flow rate of the individual phases. An extensive literature search was conducted on the topic and related areas of interest. The major difficulty in measuring both the velocity and composition of multiphase streams is in dealing with the wide variety of flow regimes which are possible in multiphase flow in pipes. A device which is suitable for accurate velocity measurement in multiphase flows is not commercially available. However, if the flow is well mixed, it should be possible to calibrate a simple device, such as a nozzle or a venturi, to provide accurate total volumetric flow rates. Several commercial in-line static mixing devices are suitable for low gas concentrations (≤ 10 percent) and with superficial gas velocities higher than 10 m/s. For lower gas velocities and high gas concentrations, the suitability of these in-line mixers will have to be further assessed experimentally. Other techniques such as cross-correlation are known for two-phase flow velocity measurements, and the results of these applications look promising. A multiphase compositional meter to monitor the concentration of oil, water, and gas phases flowing in a pipeline, used in combination with a suitable homogenizer and a velocity meter, would facilitate measurement of the mass flow rates of the individual phases. Further work must be done to develop this concept.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献