Inertial Effects on Void Growth in Porous Viscoplastic Materials

Author:

Tong W.1,Ravichandran G.1

Affiliation:

1. Graduate Aeronautical Laboratories, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125

Abstract

The present work examines the inertial effects on void growth in viscoplastic materials which have been largely neglected in analyses of dynamic crack growth and spallation phenomena using existing continuum porous material models. The dynamic void growth in porous materials is investigated by analyzing the finite deformation of an elastic/viscoplastic spherical shell under intense hydrostatic tensile loading. Under typical dynamic loading conditions, inertia is found to have a strong stabilizing effect on void growth process and consequently to delay coalescence even when the high rate-sensitivity of materials at very high strain rates is taken into account. Effects of strain hardening and thermal softening are found to be relatively small. Approximate relations are suggested to incorporate inertial effects and rate sensitivity of matrix materials into the porous viscoplastic material constitutive models for dynamic ductile fracture analyses for certain loading conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3