Interval Extensions of Signed Distance Functions: iSDF-reps and Reliable Membership Classification

Author:

Storti Duane1,Finley Chris1,Ganter Mark1

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600

Abstract

This paper considers the problem of inferring the geometry of an object from values of the signed distance sampled on a uniform grid. The problem is motivated by the desire to effectively and efficiently model objects obtained by 3D imaging technology such as magnetic resonance, computed tomography, and positron emission tomography. Techniques recently developed for automated segmentation convert intensity to signed distance, and the voxel structure imposes the uniform sampling grid. The specification of the signed distance function (SDF) throughout the ambient space would provide an implicit and function-based representation (f-rep) model that uniquely specifies the object, and we refer to this particular f-rep as the signed distance function representation (SDF-rep). However, a set of uniformly sampled signed distance values may uniquely determine neither the distance function nor the shape of the object. Here, we employ essential properties of the signed distance to construct the upper and lower bounds on the allowed variation in signed distance, which combine to produce interval-valued extensions of the signed distance function. We employ an interval extension of the signed distance function as an interval SDF-rep that defines the range of object geometries that are consistent with the sampled SDF data. The particular interval extensions considered include a tight global extension and more computationally efficient local extensions that provide useful criteria for root exclusion/isolation. To illustrate a useful application of the interval bounds, we present a reliable approach to top-down octree membership classification for uniform samplings of signed distance functions.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference34 articles.

1. Comparison of 3D Segmentation Algorithms for Medical Imaging;Bulu

2. Volume Modeling;Nielsen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3