Comparative Analysis of Single- and Dual-Media Thermocline Tanks for Thermal Energy Storage in Concentrating Solar Power Plants

Author:

Mira-Hernández Carolina1,Flueckiger Scott M.1,Garimella Suresh V.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 e-mail:

Abstract

A molten-salt thermocline tank is a low-cost option for thermal energy storage (TES) in concentrating solar power (CSP) plants. Typical dual-media thermocline (DMT) tanks contain molten salt and a filler material that provides sensible heat capacity at reduced cost. However, conventional quartzite rock filler introduces the potential for thermomechanical failure by successive thermal ratcheting of the tank wall under cyclical operation. To avoid this potential mode of failure, the tank may be operated as a single-medium thermocline (SMT) tank containing solely molten salt. However, in the absence of filler material to dampen tank-scale convection eddies, internal mixing can reduce the quality of the stored thermal energy. To assess the relative merits of these two approaches, the operation of DMT and SMT tanks is simulated under different periodic charge/discharge cycles and tank wall boundary conditions to compare the performance with and without a filler material. For all conditions assessed, both thermocline tank designs have excellent thermal storage performance, although marginally higher first- and second-law efficiencies are predicted for the SMT tank. While heat loss through the tank wall to the ambient induces internal flow nonuniformities in the SMT design over the scale of the entire tank, strong stratification maintains separation of the hot and cold regions by a narrow thermocline; thermocline growth is limited by the low thermal diffusivity of the molten salt. Heat transport and flow phenomena inside the DMT tank, on the other hand, are governed to a great extent by thermal diffusion, which causes elongation of the thermocline. Both tanks are highly resistant to performance loss over periods of static operation, and the deleterious effects of dwell time are limited in both tank designs.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3