Affiliation:
1. Reactor Analysis and Safety Division, Argonne National Laboratory, Argonne, Ill. 60439
Abstract
The accuracy of two integration algorithms is studied for the common engineering condition of a von Mises, isotropic hardening model under plane stress. Errors in stress predictions for given total strain increments are expressed with contour plots of two parameters; an angle in the pi-plane and the difference between the exact and computed yield surface radii. The two methods are the tangent predictor-radial return approach and the elastic predictor-radial corrector algorithm originally developed by Mendelson. The accuracy of a combined tangent predictor-radial corrector algorithm is also investigated. For single-step constant-strain-rate increments the elastic predictor-radial corrector method is generally the most accurate, although errors in angle can be significant. The use of a simple subincrementation formula with any one of the three approaches yields results that would be acceptable for most engineering problems.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
202 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献