Asymptotic Theories of Large-Scale Motion, Temperature, and Moisture Distribution in Land-Based Polythermal Ice Sheets: A Critical Review and New Developments

Author:

Baral Dambaru Raj1,Hutter Kolumban1,Greve Ralf1

Affiliation:

1. Institut fu¨r Mechanik, Technische Universita¨t Darmstadt, Hochschulstr 1, D-64289 Darmstadt, Germany

Abstract

A review is given of the theory of polythermal ice sheets, ie, ice masses of which the ice has submelting temperatures in certain subdomains and is at the pressure melting point in other subdomains. Cold ice is treated as a non-linearly viscous heat conducting fluid, temperate ice as a mixture of ice at the melting point and melt-water diffusing through the ice matrix. Cold and temperate ice are separated by a non-material singular Stefan-type surface. We repeat and partly amend the complicated field equations and boundary conditions as derived in the literature. These equations are subjected to a scale analysis that makes the creeping flow conditions and the shallow geometries of land-based ice sheets explicit. The small aspect ratio ε — typical depth to horizontal distance over which the geometry and/or stresses change appreciably — suggests a perturbation approach for a possible analytical or numerical solution which has been pursued to include second-order terms O(ε2). The lowest-order O(ε0) model equations, known as the shallow-ice approximation (SIA), are asymptotically valid in the entire ice sheet domain except a small marginal zone provided the topographic variations are shallow, ie, possess wave height to wavelength ratios that are O(ε1) and the constitutive relation for the stress deviator exhibits finite viscosity at zero effective shear stress (square root of second stress deviator invariant). We critically review earlier procedures and put them into the proper perspectives with regard to the original expansion procedures. We extend the zeroth-order theory to first and second order but present only those equations and deductions from them which lead to improved physical insight. In particular we derive stress formulas which show how the stresses depend on i) depth and surface slope, ii) surface topography and iii) stress deviator components, more complete than, and going beyond, known formulas of the literature. Finally we discuss numerically computed second-order stresses for the present state of the Greenland ice sheet. It turns out that they are typically three orders of magnitude smaller than the corresponding zeroth-order quantities, and that they are mainly determined by contributions due to zeroth-order stress deviators, rather than by topography effects. Their relative importance is largest close to the ice surface for the second-order pressure, and in the vicinity of ice domes for the horizontal, bed-parallel shear stresses. There are 229 references.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incorporating Horizontal Density Variations Into Large‐Scale Modeling of Ice Masses;Journal of Geophysical Research: Earth Surface;2023-02

2. A numerical investigation of three-dimensional falling liquid films;Environmental Fluid Mechanics;2022-03-24

3. Properties and Mechanical Behaviour of Ice;GeoPlanet: Earth and Planetary Sciences;2018-12-30

4. Anisotropic radial basis function methods for continental size ice sheet simulations;Journal of Computational Physics;2018-11

5. Eurasian ice-sheet dynamics and sensitivity to subglacial hydrology;Journal of Glaciology;2017-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3