Symbolic Dynamic Analysis of Transient Time Series for Fault Detection in Gas Turbine Engines

Author:

Sarkar Soumalya1,Mukherjee Kushal2,Sarkar Soumik2,Ray Asok3

Affiliation:

1. e-mail:

2. Mem. ASME e-mail:

3. Fellow ASME e-mail: Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

Abstract

This brief paper presents a symbolic dynamics-based method for detection of incipient faults in gas turbine engines. The underlying algorithms for fault detection and classification are built upon the recently reported work on symbolic dynamic filtering. In particular, Markov model-based analysis of quasi-stationary steady-state time series is extended to analysis of transient time series during takeoff. The algorithms have been validated by simulation on the NASA Commercial Modular Aero Propulsion System Simulation (C-MAPSS) transient test-case generator.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference25 articles.

1. Application of Bayesian Forecasting to Change Detection and Prognosis of Gas Turbine Performance;ASME J. Eng. Gas Turbines Power,2010

2. Three-and Seven-Point Optimally Weighted Recursive Median Filters for Gas Turbine Diagnostics;Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.,2008

3. A Gas Turbine Diagnostic Approach With Transient Measurements;Proc. Inst. Mech. Eng., Part A,2003

4. Fault Detection and Diagnosis in Gas Turbines;ASME J. Eng. Gas Turbines Power,1991

5. Wang, X., McDowell, N., Kruger, U., McCullough, G., and Irwin, G. W., 2008, “Semi-Physical Neural Network Model in Detecting Engine Transient Faults Using the Local Approach,” Proceedings of the 17th World Congress of the International Federation of Automatic Control (IFAC'08), July 6–11. 10.3182/20080706-5-KR-1001.01201

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3