Implementation of a Five Degree of Freedom Automated System to Determine Knee Flexibility In Vitro

Author:

Berns G. S.1,Hull M. L.2,Patterson H. A.3

Affiliation:

1. Biomedical Engineering Graduate Group, University of California, Davis, CA 95616

2. Department of Mechanical Engineering, University of California, Davis, CA 95616

3. Department of Human Anatomy, University of California, Davis, CA 95616

Abstract

This article describes an automated system designed to study the complete flexibility functions of the knee in vitro. The system allows five degrees of freedom with flexion angle being fixed, though adjustable from 0 to 45 deg. Loads corresponding to each of the five motions can be applied independently and in any combination. The effect of weight bearing on knee flexibility can also be studied by including axial force as one of the five loads. The relative motions are measured with LVDT’s and RVDT’s, and the loads are measured with strain gage transducers. The system is digitally controlled with a closed feedback loop, allowing for any combination of programmed loads. A control algorithm on an IBM PC/AT monitors the loads on each axis and continuously adjusts stepping motors to correctly follow programmed loads. The machine coordinate system corresponds to clinically accepted definitions of motion yet retains sequence independence for rotations. Results are presented demonstrating the repeatability of using a functional definition of axis placement to align the leg within the machine. Results are also presented demonstrating the utility of the full flexibility functions of the knee, notably in the determination of significant load interactions between anterior/posterior force and internal/external torque, and varus/valgus torque and internal/external torque.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3