Combined Temperature and Force Control for Robotic Friction Stir Welding

Author:

Fehrenbacher Axel1,Smith Christopher B.2,Duffie Neil A.1,Ferrier Nicola J.1,Pfefferkorn Frank E.1,Zinn Michael R.3

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706

2. Friction Stir Link, Inc., Brookfield, WI 53045

3. Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706 e-mail:

Abstract

Use of robotic friction stir welding (FSW) has gained in popularity as robotic systems can accommodate more complex part geometries while providing high applied tool forces required for proper weld formation. However, even the largest robotic FSW systems suffer from high compliance as compared to most custom engineered FSW machines or modified computer numerical control (CNC) mills. The increased compliance of robotic FSW systems can significantly alter the process dynamics such that control of traditional weld parameters, including plunge depth, is more difficult. To address this, closed-loop control of plunge force has been proposed and implemented on a number of systems. However, due to process parameter and condition variations commonly found in a production environment, force control can lead to oscillatory or unstable conditions and can, in extreme cases, cause the tool to plunge through the workpiece. To address the issues associated with robotic force control, the use of simultaneous tool interface temperature control has been proposed. In this paper, we describe the development and evaluation of a closed-loop control system for robotic friction stir welding that simultaneously controls plunge force and tool interface temperature by varying spindle speed and commanded vertical tool position. The controller was implemented on an industrial robotic FSW system. The system is equipped with a custom real-time wireless temperature measurement system and a force dynamometer. In support of controller development, a linear process model has been developed that captures the dynamic relations between the process inputs and outputs. Process validation identification experiments were performed and it was found that the interface temperature is affected by both spindle speed and commanded vertical tool position while axial force is affected primarily by commanded vertical tool position. The combined control system was shown to possess good command tracking and disturbance rejection characteristics. Axial force and interface temperature was successfully maintained during both thermal and geometric disturbances, and thus weld quality can be maintained for a variety of conditions in which each control strategy applied independently could fail. Finally, it was shown through the use of the control process model, that the attainable closed-loop bandwidth is primarily limited by the inherent compliance of the robotic system, as compared to most custom engineered FSW machines, where instrumentation delay is the primary limiting factor. These limitations did not prevent the implementation of the control system, but are merely observations that we were able to work around.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference23 articles.

1. Friction Stir Butt Welding,1991

2. Friction Stir Welding and Processing;J. Mater. Sci. Eng.,2005

3. Friction Stir Welding of Aluminium Alloys;Int. Mater. Rev.,2009

4. Toward Automation of Friction Stir Welding Through Temperature Measurement and Closed-Loop Control;ASME J. Manuf. Sci. Eng.,2011

5. Closed-Loop Control of Temperature in Friction Stir Welding and Its Effect on Weld Quality

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3