Enhanced Electro-Osmotic Flow of Power-Law Fluids in Hydrophilic Patterned Nanochannel

Author:

Majhi M.1,Nayak A. K.1,Banerjee A.2

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, India

2. Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel

Abstract

Abstract In this paper, electro-osmotic flow (EOF) enhancement of non-Newtonian power-law fluids in a modulated nanochannel with polarized wall is proposed. The channel walls are embedded with periodically arranged rectangular grooves, placed vertically with the direction of electric field. The key aspect of the present study is to achieve enhanced EOF of power-law fluids due to periodic groove patterns. The flow characteristics are studied through Poisson–Nernst–Plank-based Navier–Stokes model associated with electrochemical boundary conditions. Some random-phase differences between the grooves in both the walls are allowed to find the best configuration for the EOF enhancement in case of both Pseudo-plastic fluid, Dilatant fluid, and compared to Newtonian fluid. A notable enhancement factor is observed when groove width is much larger than its depth along with overlapped EDL. It is also found that EOF enhancement for shear-thinning fluid is quite better than the other fluids, for the same set of physical parameters. A comparison of enhancement factor for power-law fluid is also presented when the grooves are replaced with hydrophobic strips. It is worth to mention here that the present study assumes no-slip condition which is true for wetting (hydrophilic) surface over nonwetting (hydrophobic) strips which is common occurrence in regards to nanoconfinements.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3