Dynamic Response of Pressure Compensated Variable Displacement Linkage Pump

Author:

Fulbright Nathaniel J.1,Van de Ven James D.1

Affiliation:

1. University of Minnesota, Minneapolis, MN

Abstract

The Variable Displacement Linkage Pump (VDLP) uses an adjustable planar linkage to vary the displacement of the piston. Previous work focused on dynamic modeling of the pump at fixed displacements and therefore did not account for the displacement control method or the dynamics of changing displacement. One key application of the VDLP is in pressure compensated, high-pressure water hydraulics. This paper expands on previous modeling work to include the behavior of the hydro-mechanical pressure compensation valves and the displacement control linkage. The multi-domain dynamic model captures the fluid dynamics in the pumping chambers and poppet-style control valves; the dynamics of the control valves; and the kinematics and kinetics of the two degree-of-freedom nine-bar pump linkage. The dynamic model was exercised in a simulation of the pump responding to changing demands in the output flow rate. Simulation results showed that quick response times of 100 milliseconds to a step in the load were achieved. Overshoot of the displacement is damped using an orifice in the control line. A physical prototype of the VDLP was used to validate the simulation results.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational analysis of novel variable displacement pumps;International Journal of Modern Physics C;2022-01-06

2. Optimization of parameters of the pressure regulator with variable characteristic;IOP Conference Series: Materials Science and Engineering;2020-03-01

3. Mathematical representation of pressure regulator with variable characteristic;IOP Conference Series: Materials Science and Engineering;2019-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3