Comparison of Random Forest and Neural Network in Modeling the Performance and Emissions of a Natural Gas Spark Ignition Engine

Author:

Liu Jinlong1,Huang Qiao2,Ulishney Christopher1,Dumitrescu Cosmin E.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26505

2. Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26505

Abstract

Abstract Machine learning (ML) models can accelerate the development of efficient internal combustion engines. This study assessed the feasibility of data-driven methods toward predicting the performance of a diesel engine modified to natural gas (NG) spark ignition (SI), based on a limited number of experiments. As the best ML technique cannot be chosen a priori, the applicability of different ML algorithms for such an engine application was evaluated. Specifically, the performance of two widely used ML algorithms, the random forest (RF) and the artificial neural network (ANN), in forecasting engine responses related to in-cylinder combustion phenomena was compared. The results indicated that both algorithms with spark timing (ST), mixture equivalence ratio, and engine speed as model inputs produced acceptable results with respect to predicting engine performance, combustion phasing, and engine-out emissions. Despite requiring more effort in hyperparameter optimization, the ANN model performed better than the RF model, especially for engine emissions, as evidenced by the larger R-squared, smaller root-mean-square errors (RMSEs), and more realistic predictions of the effects of key engine control variables on the engine performance. However, in applications where the combustion behavior knowledge is limited, it is recommended to use a RF model to quickly determine the appropriate number of model inputs. Consequently, using the RF model to define the model structure and then using the ANN model to improve the model’s predictive capability can help to rapidly build data-driven engine combustion models.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3