Effects of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine at Partial Loads

Author:

Sequera A. J.1,Parthasarathy R. N.1,Gollahalli S. R.1

Affiliation:

1. School of Aerospace and Mechanical Engineering, University of Oklahoma, 212 Felgar Hall, 865 Asp Avenue, Norman, OK 73019

Abstract

Methyl and ethyl esters of vegetable oils have become an important source of renewable energy with convenient applications in compression-ignition (CI) engines. While the use of biofuels results in a reduction of CO, particulate matter, and unburned hydrocarbons in the emissions, the main disadvantage is the increase of nitrogen oxides (NOx) emissions. The increase in NOx emissions is attributed to differences in chemical composition and physical properties of the biofuel, which in turn affect engine operational parameters such as injection delay and ignition characteristics. The effects of fuel injection timing, which can compensate for these changes, on the performance and emissions in a single cylinder air-cooled diesel engine at partial loads using canola methyl ester and its blends with diesel are presented in this study. The engine is a single cylinder, four stroke, naturally aspirated, CI engine with a displacement volume of 280 cm3 rated at 5 HP at 3600 rpm under a dynamometer load. It was equipped with a pressure sensor in the combustion chamber, a needle lift sensor in the fuel injector, and a crank angle sensor attached to the crankshaft. Additionally, the temperature of the exhaust gases was monitored using a thermocouple inside the exhaust pipe. Pollutant emissions were measured using an automotive exhaust gas analyzer. Advanced, manufacturer-specified standard, and delayed injection settings were applied by placing shims of different thicknesses under the injection pump, thus, altering the time at which the high-pressure fuel reached the combustion chamber. The start of injection was found to be insensitive to the use of biofuels in the engine. The late injection timing of the engine provided advantages in the CO and NO emissions with a small penalty in fuel consumption and thermal efficiency.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference14 articles.

1. Effects of Biodiesel, Biodiesel Blends, and a Synthetic Diesel on Emissions From Light Heavy-Duty Diesel Vehicles;Durbin;Environ. Sci. Technol.

2. Effects of Biodiesel Blends and Arco EC-Diesel on Emissions From Light Heavy-Duty Diesel Vehicles;Durbin;Environ. Sci. Technol.

3. Fuel Property Effects on Biodiesel;Tat

4. Fuel Property Effects on Injection Timing, Ignition Timing and Oxides of Nitrogen Emissions From Biodiesel-Fueled Engines;Tat

5. Evaluation of Formulation Strategies to Eliminate the Biodiesel NOx Effect;Szybist;Fuel Process. Technol.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3