Thickness Effect Criterion for Fatigue Strength Evaluation of Welded Steel Structures

Author:

Yagi J.1,Machida S.2,Matoba M.2,Tomita Y.1,Soya I.3

Affiliation:

1. Osaka University, Suita-shi, Japan

2. University of Tokyo, Tokyo, Japan

3. Nippon Steel Corporation, Futtsu-shi, Japan

Abstract

From a practical point of view, some measures to reduce the thickness effect backed by a reasonable criterion are required for fabricating structures with heavy section plates. In this study, the thickness effect was investigated by systematic experiments on welded steel joints with thicknesses ranging from 10 to 80 mm. Cruciform joints and T-joints with improved weld by overall profiling or toe-grinding were tested under pulsating tension and under pulsating bending, respectively. These experimental results were analyzed together with the previous results of as-welded joints. As a result, it was concluded that the thickness effect exponents for various conditions may be classified into three categories according to the combination of joint type and loading mode. As-welded joints under bending stress have the steepest thickness effect exponent of −1/3, while as-welded joints under tension with an exponent of −1/5 is milder in thickness effect than that specified in the existing codes. If the weld profile is improved by grinding, the thickness effect becomes much milder to an exponent of −1/10. The as-weld joints with constant-sized attachments also have an exponent of −1/10. Furthermore, thickness effect dependence on fatigue life and thickness effect under random stress were investigated. Based on these results, this study proposes a new evaluation criterion for design purposes.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3