A Theory for the Effects of Film Thickness and Normal Load in the Friction of Thin Films

Author:

Finkin E. F.1

Affiliation:

1. Colt Industries, Fairbanks Morse Inc., Beloit, Wisc.

Abstract

The effect of film thickness in solid friction is reviewed. Two regimes are distinguished: (a) increasing coefficient of friction with decreasing film thickness which occurs for ultrathin films and (b) decreasing coefficient of friction with decreasing film thickness which occurs for thin films. The former regime has previously been treated by the author; consequently, attention is focused on the latter regime. A review of the thin film phenomenon establishes that it is very much dependent on the type of deformation occurring at the contact and concludes that no single expression can uniquely describe it for all materials situations. A special theory is put forth for the contact situation corresponding to a model of an elastic layer of much less rigidity than its substrate and indenter. This situation corresponds to practically all naturally occurring and bonded nonmetallic solid lubricant films of industrial and scientific interest. It is shown that coefficient of friction f obeys the relation f ∝ 1/P for variable load P and constant thickness h, f ∝ h for constant load and variable film thickness, and f ∝ h/P for the general case. These expressions are verified by use of data from pin-on-disk tests, Falex tests, 4-ball tests, modified MacMillan tests, and other types of tests. The experimental data are for naturally formed graphite on diamond, SiO2 bonded PbO on stainless steel, and phenolic bonded 9MoS2-1 graphite films on steel and aluminum.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3