Boundary Element Method for Fluid-Structure Interaction Problems in Liquid Storage Tanks

Author:

Hwang I.-T.1,Ting K.1

Affiliation:

1. Institute of Nuclear Energy Research, Taiwan

Abstract

Abstract The dynamic response of liquid storage tank, including the hydrodynamic interactions, subjected to earthquake excitations is studied by the combinations of boundary element method and finite element procedure in this paper. The tank wall and inviscid fluid domain are treated as two substructures of the total system-coupled through the hydrodynamic pressures. The boundary element method is employed to determine the hydrodynamic pressures associated with small amplitude excitations and negligible surface wave effects in fluid domain which are expressed as the frequency-dependent terms related with the natural vibration modes of elastic tank alone. These terms are incorporated into the finite element formulation of elastic tank in frequency domain and the generalized displacements are computed by synthesizing their complex frequency response using Fast-Fourier Transform procedure. Thus, the hydrodynamic interactions between the elastic flexible tank wall and the fluid are then solved. To demonstrate the accuracy and validity of the solution procedure developed herein, numerical examples are analyzed. Good correlations between the computed results with the referenced solutions in literature can be noted. The effects of fluid compressibility and tank flexibility are also evaluated in this work. Finally, the dynamic response of liquid storage tank due to seismic excitations is also analyzed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3