A Test Facility for the Measurement of Torques at the Shaft to Seal Interface in Brush Seals

Author:

Wood P. E.1,Jones T. V.1

Affiliation:

1. Department of Engineering Science, Osnex Laboratory, University of Oxford, Parks Road, Oxford, United Kingdom

Abstract

An important factor in the performance of brush seals for a wide range of gas turbine applications is the rate of wear at the seal to shaft interface, which is dependent on the contact pressure that exists between the bristles and rubbing surface. This is dependent on a variety of effects. Principally, these are the aerodynamic forces bending the bristles onto the rubbing surface, frictional effects within the bristle pack and at the backing ring that arise with the application of pressure differential, geometrical changes due to centrifugal and thermal growths, and transient differential movements of the rotor that develop in flight manoeuvres. In order to investigate the effect of these phenomena on contact pressure, a test facility has been devised in which the torque exerted by a brush seal on a rotating shaft is used as an indirect measurement of contact pressure. This has necessitated the design of a test facility in which all system torques can be fully calibrated. Consequently, a pressure balanced design has been adopted in which applied seal differential and pressure levels have a minimal effect on axial loads at the rotor bearing assembly. The primary method of torque measurement is the instantaneous deceleration of the rotor. Thus, measurements over a wide speed range are acquired with high frequency instrumentation. The means whereby small parasitic torques are evaluated and corrected is given. Results demonstrating the dependence of contact pressure on seal differential and pressure levels are presented.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3