Flow-Induced Vibration in Subsea Jumper Subject to Downstream Slug and Ocean Current

Author:

Lu Yaojun1,Liang Chun1,Manzano-Ruiz Juan J.1,Janardhanan Kalyana1,Perng Yeong-Yan2

Affiliation:

1. Bechtel Corporation, Houston, TX 77056

2. ANSYS, Inc., Austin, TX 78746

Abstract

This paper presents a multiphysics approach for characterizing flow-induced vibrations (FIVs) in a subsea jumper subject to internal production flow, downstream slug, and ocean current. In the present study, the physical properties of production fluids and associated slugging behavior were characterized by pvtsim and olga programs under real subsea condition. Outcomes of the flow assurance studies were then taken as inputs of a full-scale two-way fluid–structure interaction (FSI) analysis to quantify the vibration response. To prevent onset of resonant risk, a detailed modal analysis has also be carried out to determine the modal shapes and natural frequencies. Such a multiphysics approach actually integrated the best practices currently available in flow assurance (olga and pvtsim), computational fluid dynamics (CFD), finite element analysis (FEA), and modal analysis, and hence provided a comprehensive solution to the FSI involved in a subsea jumper. The corresponding results indicate that both the internal production flow, downstream slugs, and the ocean current would induce vibration response in the subsea jumper. Compared to the vortex-induced vibration (VIV) due to the ocean current and the FIV due to the internal production flow, pressure fluctuation due to the downstream slug plays a dominant role in generating excessive vibration response and potential fatigue failure in the subsea jumper. Although the present study was mainly focused on the subsea jumper, the same approach can be applied to other subsea components, like subsea flowline, subsea riser, and other subsea production equipment.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference14 articles.

1. Hidden Integrity Threat Looms in Subsea Pipework Vibrations;Offshore,2011

2. Taniguxhi, T., and Kawano, K., 2005, “Effects of Current Induced Static Response on Total Response of Offshore Structures Subjected to Wave and Current,” 15th International Offshore and Polar Engineering Conference, Seoul, Korea, pp. 19–24.

3. Jia, D., 2012, “Slug Induced Vibration in Pipeline Span, Jumper, and Riser,” Offshore Technology Conference, Houston, TX, Paper No. OTC-22935.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3