Parametric Identification of Nonlinear Systems by Haar Wavelets: Theory and Experimental Validation

Author:

Chen Shy-Leh1,Liang Jin-Wei2,Ho Keng-Chu3

Affiliation:

1. Advanced Institute of Manufacturing with High-Tech Innovations,Department of Mechanical Engineering, National Chung Cheng University, 168 University Road, Minhsiung Township, Chiayi County, 62102, Taiwan, R.O.C. e-mail:

2. Department of Mechanical Engineering, Ming-Chi University of Technology, Taishan, New Taipei City, 24301,Taiwan, R.O.C.

3. Advanced Institute of Manufacturing with High-Tech Innovations,Department of Mechanical Engineering, National Chung Cheng University, 168 University Road, Minhsiung Township, Chiayi County, 62102, Taiwan, ROC

Abstract

This study addresses the identification of nonlinear systems. It is assumed that the function form in the nonlinear system is known, leaving some unknown parameters to be estimated. Since Haar wavelets can form a complete orthogonal basis for the appropriate function space, they are used to expand all signals. In doing so, the state equation can be transformed into a set of algebraic equations in unknown parameters. The technique of Kronecker product is utilized to simplify the expressions of the associated algebraic equations. Together with the least square method, the unknown system parameters are estimated. The proposed method is applied to the identification of an experimental two-well chaotic system known as the Moon beam. The identified model is validated by comparing the chaotic characteristics, such as the largest Lyapunov exponent and the correlation dimension, of the experimental data with that of the numerical results. The simple least square approach is also performed for comparison. The results indicate that the proposed method can reliably identify the characteristics of the nonlinear chaotic system.

Publisher

ASME International

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3