Resonance Tracking of Continua Using Self-Sensing Actuators

Author:

Kern Dominik1,Brack Tobias1,Seemann Wolfgang1

Affiliation:

1. Chair for Engineering Mechanics (ITM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany

Abstract

This paper proposes and develops an innovative method to solve the resonance tracking problem for actuator and sensor applications to obtain maximum power transmission or signal selectivity using a modified phase-locked loop (PLL). The tracking of a higher eigenfrequency is very useful in some cases, but it is more challenging than the excitation of the only eigenfrequency of a 1-DoF system. The resonances are identified through employing their characteristic phase difference. The conventional PLL was modified to track a certain phase difference without deviation. The closed loop is a nonlinear control system due to the conversion between harmonic signals and phase signals. However, a model simplification to linear elements allows the goal oriented determination of the controller parameters. The advantages of self-sensing in combination with resonance tracking are attractive for practical applications such as ultrasonic motors and compact force sensors. The conducted experiments approved the effectiveness of the resonant excitation of higher oscillation modes of continua using self-sensing actuators.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference24 articles.

1. Piezoelectric Ultrasonic Motors: Overview;Uchino;Smart Mater. Struct.

2. Tracking the Resonance Frequency of a Series RLC Circuit Using a Phase Locked Loop;Gökcek

3. Analysis and Design of Resonance Tuning Systems;Jeltema;Proc. SPIE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3