Analysis and Modeling of Burr Formation During the Plane Milling of Cast Aluminum Alloy Using Polycrystalline Diamond Tools

Author:

Bourlet Clément1,Fromentin Guillaume1,Harika Elias2,Crolet Arnaud2

Affiliation:

1. Arts et Metiers ParisTech, LaBoMaP, Rue Porte de Paris, Cluny 71250, France

2. Montupet, 3 Rue de Nogent, Laigneville 60290, France

Abstract

Burr formation is a significant problem during manufacturing and leads to a lack of geometrical quality through the appearance of undesired and undefined shapes on the workpiece. Thus, understanding the burr formation and elaborating of predictive models are helpful for process design in order to avoid or to reduce burrs and to optimize the strategies for eventual deburring. This study presents both an experimental approach and a model for the plane milling of openwork parts, where burrs are a significant factor. A large-scale analysis of relevant geometrical parameters and their interactions are performed. A phenomenological burr size model is established considering local parameters and the specificities of 3D cutting in milling. Based on local parameters, this article proposes a new methodology to simulate burr height along any part edge and for most face-milling trajectories. Simulations and validations during tool path exits, with changing local parameters, are presented. In addition to the quantitative approach, new 3D aspects of face milling in relation with exit order sequence (EOS) are developed.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3