On-Condition Maintenance for Nonmodular Jet Engines: An Experience

Author:

Siladic Mato F.1,Rasuo Bosko P.1

Affiliation:

1. Department of Aeronautics, Faculty of Mechanical Engineering, University of Belgrade, 11120 Belgrade, Yugoslavia

Abstract

Using updated knowledge and gained experience in engine control and maintenance, a specific on-condition maintenance concept of RD-33 engines installed on MiG-29s was developed. The engines had several built-in limitations: number of starts, number of hours at the maximum power and reheat, number of hours at the special regime of elevated temperatures, and time between overhauls (TBOs), that is, number of flight hours. During field data collection and analysis, it was found that engines worked with different working loads and different levels of life consumption. Hence, it was concluded that the limitation of TBO, expressed in terms of flight hours, do not represent actual engine health condition and that a new way of monitoring actual load needs to be introduced. An analysis of all flight profiles was carried out and a specific relation between flight hours and total accumulated cycles (TACs) was established. For this purpose, a distributed expert system in relation-operation unit—Air Force Technical Institute—overhaul depot was introduced. Each of the three participants has its own level of responsibility in the engine health monitoring, engine maintenance, and engine health condition decision-making process. Nondestructive inspection, remote visual inspection, spectral oil analysis, fault tolerant control techniques of hot engine parts, engine electronic control unit, airplane information-display system, engine performance trend monitoring, vibration monitoring, and postflight data analysis play key roles in the concept. It has been applied in practice since 1994; all faults were discovered right in time, and there were not any critical situations in flight. Detected faults were isolated and assessed for severity, so that the remaining useful life could be estimated. The original TBO was safely extended on the basis of TAC of up to more than 50% of the originally prescribed TBO hours, while maintaining the same safe margin.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference11 articles.

1. Introduction of On-Condition Maintenance Concept for Turbofan Engine of Combat Airplane;Siladic

2. Cumulative Fatigue Damage Modeling—Crack Nucleation and Early Growth;Halford

3. 1984, “Proposal for PW1120Y for Yugoslavia's Supersonic, Multipurpose, High Performance Combat Aircraft Program,” U.T. Pratt & Whitney Aircraft, Report No. FP 84-614.

4. Sealing in Turbomachinery;Chupp;J. Propul. Power

5. Erosion and Deposition in Turbomachinery;Hamed;J. Propul. Power

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3