Deposit Formation in Hydrocarbon Fuels

Author:

Roback R.1,Szetela E. J.1,Spadaccini L. J.1

Affiliation:

1. United Technologies Research Center, East Hartford, Conn. 06108

Abstract

A high-pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6–30 m/s and tube wall temperatures in the range 422–811 K. In addition, the effect of the inside wall material on deposit formation was evaluated in selected tests which were conducted using nickel-plated tubes. The results of the tests indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800 K, with peak deposit formation occurring near 700 K. No improvements were obtained when deoxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. Finally, plating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

Publisher

ASME International

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carbonaceous Deposits in a Fuel-Film Cooled Rocket Combustor: Electron Microscopy;Journal of Propulsion and Power;2021-10-13

2. Carbonaceous Deposits in a Fuel-Film-Cooled Rocket Combustor: Optical Profilometry;Journal of Propulsion and Power;2021-09

3. Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003;Journal of Propulsion and Power;2003-11

4. Heat Transfer and Deposition Behavior of Hydrocarbon Rocket Fuels;41st Aerospace Sciences Meeting and Exhibit;2003-01-06

5. Propellant Requirements for Future Aerospace Propulsion Systems;38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit;2002-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3