A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept

Author:

Mari Michele1,Venturini Mauro1,Beyene Asfaw2

Affiliation:

1. Dipartimento di Ingegneria, Università degli Studi di Ferrara, Via Giuseppe Saragat, 1, Ferrara 44122, Italy

2. Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-5102

Abstract

In this study, we present the results of a two-dimensional fluid-dynamic simulation of novel rotor geometry with spline function which is derivative of the traditional S-shape Savonius blade. A computational fluid dynamic (CFD) analysis is conducted using the Spalart–Allmaras turbulent model, validated using experimental data released by Sandia National Laboratory. Results are presented in terms of dimensionless torque and power coefficients, assuming a wind speed of 7 m/s and height and rotor diameter of 1 m. Furthermore, analysis of the forces acting on the rotor is conducted by evaluating frontal and side forces on each blade, and the resultant force acting on the central shaft. A qualitative representation of the vorticity around the traditional and spline rotor is shown to prove that the novel blade allows less turbulent flow through the rotor.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3