Model for the Effect of Fiber Bridging on the Fracture Resistance of Reinforced-Carbon-Carbon

Author:

Chan K. S.12,Lee Y.-D.2,Hudak S. J.2

Affiliation:

1. Fellow ASME

2. Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238

Abstract

A micromechanical methodology has been developed for analyzing fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (RCC) panels with a 3D composite architecture and a SiC surface coating. The methodology involves treating fiber bridging traction on the crack surfaces in terms of a weight function approach and a bridging law that relates the bridging stress to the crack opening displacement. A procedure has been developed to deduce material constants in the bridging law from the linear portion of the K-resistance curve. This approach has been applied to analyzing R-curves of RCC generated using double cantilever beam and single cantilever bend specimens to establish a bridging law for RCC. The bridging law has been implemented into a micromechanical code for computing the fracture response of a bridged crack in a structural analysis. The crack geometries considered in the structural analysis include the penetration of a craze crack in SiC into the RCC as a single-edge crack under bending and the deflection of a craze crack in SiC along the SiC/RCC interface as a T-shaped crack under bending. The proposed methodology has been validated by comparing the computed R-curves against experimental measurements. The analyses revealed substantial variations in the bridging stress (σo ranges from 11 kPa to 986 kPa, where σo is the limiting bridging stress) and the R-curve response for RCC due to the varying number of bridging ligaments in individual specimens. Furthermore, the R-curve response is predicted to depend on crack geometry. Thus, the initiation toughness at the onset of crack growth is recommended as a conservative estimate of the fracture resistance in RCC. If this bounding structural integrity analysis gives unacceptably conservative predictions, it would be possible to employ the current fiber bridging model to take credit for extra fracture resistance in the RCC. However, due to the large scatter of the inferred bridging stress in RCC, such an implementation would need to be probabilistically based.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference21 articles.

1. RCC SiC Anomaly;Opila

2. Evaluation of RCC Carbon-Carbon in Simulation Flight Environments;Vaughn

3. Piascik, R. , 2007, “SiC Coating Integrity Testing and Correlation With IR Thermography Line Scan Data,” NESC, NASA Report.

4. Reeder, J. , 2004, “Delamination Fracture Toughness Measurement,” NASA Langley Research Center Report.

5. O’Brien, T. K. , 2008, “RCC/SiC Interface Fracture Toughness Characterization Study,” NASA Langley Report.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3