Inverse Kinematics Solution Method of an Adaptive Piecewise Geometry for Cable-Driven Hyper-Redundant Manipulator

Author:

Yang Qiang1,Zhou Qinghua1,Zhou Guangwu1,Jiang Ming1,Zhao Zhijun2

Affiliation:

1. Sichuan University School of Aeronautics and Astronautics, , 124 South Section 1, Yihuan Road, Chengdu 610065 , China

2. Beijing Institute of Spacecraft System Engineering Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Applications, , Beijing 100094 , China

Abstract

Abstract Cable-driven hyper-redundant manipulator (CDHM) with flexible and compliant configuration has high maneuverability in a tight space owing to its multiple degrees of freedom (DOFs). However, an increase in the DOFs of the manipulator makes it very challenging to solve its inverse kinematics. The present work proposes a novel adaptive piecewise geometry method to solve the inverse kinematics of the CDHM. The corresponding computation efficiency will be much lower for traditional methods, i.e., the generalized inverse of the Jacobian matrix and artificial neural network method. When the end-effector of the manipulator is required to move with a larger range, Joint angle physical limit needs to be considered and the proposed method can select the optimal arc configuration to solve the inverse kinematics aiming at reducing joint overrun. An adaptive adjustment coefficient is further introduced to optimize the double-arc configuration so that joint motion is more reasonable as well as avoiding singular configuration. The geometry and joint parameters solved with the proposed novel method are then compared to those of the existing method with the same desired target position to verify the effectiveness of the proposed novel method. Finally, a 12-DOFs hyper-redundant manipulator physical prototype is built, and corresponding experimental results show that with the novel solution method, the manipulator end can precisely reach the expected target position with significantly less computational complexity, which is beneficial to improve real-time control efficiency of the CDHM in practical applications.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3