A Modified Incremental Harmonic Balance Method Combined with Tikhonov Regularization for Periodic Motion of Nonlinear System

Author:

Zheng Ze-chang1,Lu Zhong-rong2,Yanmao Chen3,Liu Ji-Ke2,Liu Guang4

Affiliation:

1. China Shenzhen gongchanglu 66 hao Sun Yat-sen University Shenzhen, Guangdong 518107 China

2. xingangxilu 135 hao Guangzhou, Guangdong 510006 China

3. China guangzhou Guangzhou, Guangdong 19804 China

4. guangminqu gongchanglu 66hao Sun Yat-sen university (Shenzhen) School of Aeronautics and Astronautics Shenzhen, Guangdong 518107 China

Abstract

Abstract In this paper, a modified incremental harmonic balance (IHB) method combined with Tikhonov regularization has been proposed to achieve the semi-analytical solution for the periodic nonlinear system. To the best of our knowledge, the convergence of the traditional IHB method is bound up with the iterative initial values of harmonic coefficients, especially near the bifurcation point. To this end, the Tikhonov regularization is introduced into the linear incremental equation to tackle the ill-posed situation in the iteration. To this end, the convergence performance of the traditional IHB method has been improved significantly. Moreover, convergence proof of the proposed method also has been given in this paper. Finally, a van der Pol–Duffing oscillator with external excitation and a cubic nonlinear airfoil system with the external store are adopted as numerical examples to illustrate the efficiency and the performance of the presented modified IHB method. The numerical examples show that the results achieved by the proposed method are in excellent agreement with the Runge–Kutta method, and the accuracy is not significantly reduced compared with the traditional IHB method. Especially, the modified IHB method also can converge to the exact solution from the initial values that the traditional IHB method cannot converge in both examples.

Funder

Guangdong Science and Technology Department

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3