Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology, 721302 Kharagpur, India
Abstract
The operating conditions of a solid oxide fuel cell (SOFC) system that result in maximum efficiency needs to be studied by considering the whole closed circuit system because operating at maximum cell efficiency may not lead to maximum system efficiency. In this paper, this study is performed with the aid of a comprehensive steady state model of the SOFC, the after-burner, and the heat exchangers. In order to account for the large irreversibilities, the SOFC model is derived by the application of the second law of thermodynamics to the fuel cell control volumes. The SOFC system efficiency is maximized by employing a recursive algorithm with two cascaded optimization loops, which also gives the corresponding cell operating conditions. Complex control laws are required for controlling the SOFC system for maximum efficiency. On the other hand, it is found that an appropriately chosen constant fuel utilization operation closely approximates the maximum efficiency operation of the fuel cell in its operating range.
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献