Kinematic Analysis of a Planar Eight-Bar Linkage: Application to a Platform-Type Robot

Author:

Pennock G. R.1,Kassner D. J.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

The paper presents solutions to the forward position and velocity problems of a planar eight-bar, three degree-of-freedom, closed-loop linkage. The linkage is proposed as a programmable platform-type robot which can both position and orient the platform. A sixth-order polynomial equation in the angular displacement of the platform is derived which indicates that six configurations, for a given set of input angular displacements, are possible. The polynomial equation is important in the study of the limit positions of the linkage. The forward velocity problem is solved using first-order partial derivatives of the four output angular displacements with respect to the three independent input displacements. The partial derivatives provide geometric insight into the kinematic analysis of the linkage. A graphical method, which utilizes the instantaneous centers of zero velocity, is introduced as a check of the velocity analysis. The method is solely a function of the configuration of the linkage and is, therefore, a practical alternative to other methods which rely on velocity information. For illustrative purposes, the paper includes a numerical example of the linkage used as a planar platform-type robot.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3