Energy Efficient Polymers for Gas-Liquid Heat Exchangers

Author:

Luckow Patrick1,Bar-Cohen Avram1,Rodgers Peter2,Cevallos Juan1

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

2. Department of Mechanical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates

Abstract

The compression process necessary for the liquefaction of natural gas on offshore platforms generates large amounts of heat, usually dissipated via sea water cooled plate heat exchangers. To date, the corrosive nature of sea water has mandated the use of metals, such as titanium, as heat exchanger materials, which are costly in terms of life cycle energy expenditure. This study investigates the potential of a commercially available, thermally conductive polymer material, filled with carbon fibers to enhance thermal conductivity by an order of magnitude or more. The thermofluid characteristics of a prototype polymer seawater-methane heat exchanger that could be used in the liquefaction of natural gas on offshore platforms are evaluated based on the total coefficient of performance (COPT), which incorporates the energy required to manufacture a heat exchanger along with the pumping power expended over the lifetime of the heat exchanger, and compared with those of conventional heat exchangers made of metallic materials. The heat exchanger fabricated from a low energy, low thermal conductivity polymer is found to perform as well as, or better than, exchangers fabricated from conventional materials, over its full lifecycle. The analysis suggests that a COPT nearly double that of aluminum, and more than ten times that of titanium, could be achieved. Of the total lifetime energy use, 70% occurs in manufacturing for a thermally enhanced polymer heat exchanger compared with 97% and 85% for titanium and aluminum heat exchangers, respectively. The study demonstrates the potential of thermally enhanced polymer heat exchangers over conventional ones in terms of thermal performance and life cycle energy expenditure.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference20 articles.

1. Energy Supply;Sims

2. Summary for Policymakers;Metz

3. Application of Thermally Conductive Thermoplastics to Seawater-Cooled Liquid-Liquid Heat Exchangers;Bar-Cohen

4. The Circulation of the Persian Gulf: A Numerical Study;Kampf;Ocean Science

5. Least-Energy Optimization of Air-Cooled Heat Sinks for Sustainability—Theory, Geometry and Material Selection;Bar-Cohen;Energy

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3