Heat Transfer Enhancement and Thermal Performance of Lattice Structures for Internal Cooling of Airfoil Trailing Edges

Author:

Saha Krishnendu,Acharya Sumanta1,Nakamata Chiyuki2

Affiliation:

1. Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803 e-mail:

2. IHI Corporation, Aero-Engine & Space Operations, Tokyo, Japan

Abstract

This paper presents the detailed heat transfer coefficient and pressure drop through two different lattice structures suitable for use in the trailing edge of gas turbine airfoil. The lattice structures are located in the converging trailing edge channel with the coolant flow taking a 90 deg turn before entering the lattice structure. Two lattice structures were studied with one lattice structure having four-entry channels and the second lattice structure having two entry channels. Stationary tests were performed at four Reynolds numbers (4000 < Re < 20,000) based on the inlet subchannel diameter. The results show that the two-inlet-channel lattice structure produces higher values of heat transfer coefficient and lower values of pressure drop. The data from the converging lattice structures are compared with the published pin fin data which is the common standard for trailing edge applications. It is seen that the two-inlet-channel lattice structure produces average Nu/Nu0 values in the range of 2.1–3.4 compared to a value of 1.7–2.2 for a pin fin for the current set of Reynolds number. The thermal performance factor for the four-inlet-channel lattice structure is lower than the pin fin structure but the two-inlet-channel lattice structure provides comparable or higher thermal performance compared to a pin fin structure. The lattice structures also provide additional heat transfer area and structural rigidity to the trailing edge of the airfoil. Comparable or higher thermal performance and added structural rigidity can make the lattice structure a suitable alternative of pin fins in trailing edge applications.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3